scDesign3Py.plot_reduceddim
- scDesign3Py.plot_reduceddim(ref_anndata: anndata.AnnData, anndata_list: list | anndata.AnnData, name_list: list, color_by: str, assay_use: str | None = None, default_assay_name: str | None = None, n_pc: int = 50, pc_umap: bool = True, center: bool = True, scale: bool = True, if_plot: bool = True, shape_by: str | None = None, point_size: int | float = 1)[source]
Dimensionality reduction and visualization
Dimensionality reduction using both PCA and UMAP method. Based on your choice, return the plot or the dimension reduction result.
Details:
This function takes a reference anndata.AnnData and a list of new anndata.AnnData, performs the dimensionality reduction on the reference data, projects the synthetic datasets on the same low dimensional space, then visualize the results.
Arguments:
- ref_anndata: anndata.AnnData
The reference anndata.AnnData
- anndata_list: list or anndata.AnnData
anndata.AnnData which is synthetic. If there’s more than one synthetic result, combine them in a list.
- name_list: list
A list of the names of each dataset. The length should be len(anndata_list)+1, where the first name is for ref_sce.
- color_by: str
The name in the anndata.AnnData.obs used for color.
- assay_use: str (default: None)
Indicates the assay you will use. If None, please specify a name for the assay stored in anndata.AnnData.X in @default_assay_name. The @assay_use is both used in @ref_anndata and @anndata_list.
- default_assay_name: str (default: None)
Specified only when @assay_use is None. Asign a name to your default single cell experiment.
- n_pc: int (default: 50)
The number of PCs.
- pc_umap: bool (default: True)
Whether using PCs as the input of UMAP.
- center: bool (default: True)
Whether centering the data before PCA.
- scale: bool (default: True)
Whether scaling the data before PCA.
- if_plot: bool (default: True)
Whether returning the plot. If False, return the reduced dimensions of each dataset.
- shape_by: str (default: None)
The name in the anndata.AnnData.obs used for shape.
- point_size: int or float (default: 1)
The point size in the final plot.
Output:
pandas.DataFrame or dict
When @if_plot is False, return the dataframe of reduced dimensions.
When @if_plot is True, return a dict with two plots generated by matplotlib.
- p_pca:
PCA dimension reduction method
- p_umap:
UMAP dimension reduction method